National Repository of Grey Literature 12 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
How Intracellular Pathogens Manipulate Cellular Trafficking.
Petrů, Markéta ; Doležal, Pavel (advisor) ; Pyrih, Jan (referee)
Many intracellular single-celled organisms belong to medically important human pathogens. The selected parasites are subject of this thesis - Chlamydia spp., Legionella pneumophila, Trypanosoma cruzi and Toxoplasma gondii - as well as their interactions with the vesicular transport of the host cell. Basic pathways of vesicular transport are delineated and important participating molecules described. Furthermore, the effector proteins of pathogens that interact with these molecules are included. The special chapter is devoted to phenomenon of mimetics of SNARE proteins by bacteria. The manuscript concludes with a chapter on LpSNARE of Legionella pneumophila, which was found in our laboratory and which is a topic of my experimental work herein.
Functional analysis of syntaxin 16 phosphorylation using yeast as a model
Volfová, Barbora ; Entlicher, Gustav (advisor) ; Dráber, Petr (referee)
4 Abstract Mechanism of fusion of intracellular membranes in eukaryotic cells involves several protein families including soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins and Sec1/Munc-18 related proteins (SM proteins). It is known that the transport is evolutionary conserved from yeast to man. Therefore for facilitating of the research, we can use simple eukaryotes Saccharomyces cerevisiae. Mammalian SNARE protein syntaxin 16 has a yeast homologue Tlg2p which is used in this study as a model for studying affects of phosphorylation to the syntaxin 16 function. Also their binding partners, SM proteins mVps45p (mammalian) and yeast Vps45p are homologous. Phosphorylation of SNARE proteins is known as a possible way of regulation of membrane fusion. Abolishment of one of the putative phosphorylation sites in Tlg2p protein, serine 90 leads to dominant effects on the exocytic and endocytic pathways. The work presented in this study shows some phenotypes of mutants based on this phosphorylation site of protein Tlg2p. Those mutants are S90A (cannot be phosphorylated) and S90D (phosphomimetic - acid carboxyl group mimics phosphate group). It was revealed that the phosphorylation of Tlg2p protein at serine 90 or the mutation Tlg2p-S90D may play some role in protecting Tlg2p...
Cytoplasmic membrane and tonoplast dynamics during closing and opening of stomata
Röder, Matěj ; Žárský, Viktor (advisor) ; Albrechtová, Jana (referee)
Stomata are epidermal structures mediating regulated contact of plant apoplast with surrounding environment via stomatal opening. Change of turgor plays crucial part in initiation of stomatal opening or closure. During stomatal movement, guard cell undergo considerable and repetitive changes in cell volume and consequently surface area over a period of minutes. Alteration in the surface of membrane must occurs due to limited stretching capability of the plasma membrane. It can be achieved through membrane invaginations and endocytosis of small vesicles. Microscopy and electrophysiology techniques have proven that both processes are happening in guard cells. These processes are controlled and managed by complex web of signal pathways in which actin and microtubular cytoskeletons, SNARE proteins, ion channels and others molecules have crucial parts. The aim of this work is to summarize current knowledge on the processes and mechanisms of these membranes surface changes and their molecular principle.
Secretion and autophagy in plant defence against microbes
Dobešová, Karolína ; Žárský, Viktor (advisor) ; Burketová, Lenka (referee)
Plants are sessile organisms and when attacked by microbes, they cannot easily run away. For this reason, they have developed sophisticated defensive mechanisms, that allow them to defend themselves. Since plants, unlike mammals, do not have any special immune cells, their defense takes place in each cell separately. The key moment during a microbial infection is the recognition of the microbe by the plant through its released molecular patterns (mostly proteins) associated with microbes (MAMPs). MAMPs trigger signaling cascades that lead to the secretion of antimicrobial compounds to the site of an attack. The process of autophagy is also important in the defense against microbes, which not only maintains a cellular homeostasis and controls the level of phytohormones and defense proteins in the plant cytoplasm, but also participates in the secretory activity of the cell. Recent analyzes of plant secretome have shown that plants secrete many proteins (including defensive ones) independently of the signal peptide and compartments of a conventional secretion. During exocytosis a vesicle fuses with the cytoplasmic membrane. The octameric protein complex exocyst and SNARE proteins take part in this process. The exocyst complex is highly diversified in plants - especially it's EXO70 subunit, which is...
Interaction of Plant Protein Complex Exocyst with Proteins Involved in Plant Immunity
Ortmannová, Jitka ; Žárský, Viktor (advisor) ; Burketová, Lenka (referee) ; Ovečka, Miroslav (referee)
Plants have an artillery to defend themselves. The plant surface is protected by water- resistant cuticle and mechanically strong cell wall. Then each plant cell has tools to recognize and to answer to a pathogen threat. In an extreme case, the answer is programmed cell death. Plant immunity is a complex process integrating these passive and active mechanisms in an effort to overstay a pathogen attack. When the plant cell is attacked by a pathogen, the metabolic resources are redirected towards immunity reaction which results in growth restriction. Both the immunity reaction and the growth are dependent on the efficient polarized secretion of various cargoes. Exocyst complex mediates tethering of a secretory vesicle with a target membrane and SNARE complex orchestrates the subsequent steps of vesicle docking and fusion. Exocyst and SNAREs are regulated by various proteins. In my work, I focused on identifying the exocyst interaction partners in plant immunity. In cooperation with my colleagues, we found the direct association between Qa-SNARE SYP121 involved in plant penetration resistance and EXO70B2 exocyst subunit. Moreover, we confirmed the relevance of their interaction for the formation of epidermal defensive structures, papillae and haustorial encasements in plant defence against non-adapted...
Plant tomosyns and their role in secretion
Dejová, Lilly ; Hála, Michal (advisor) ; Fendrych, Matyáš (referee)
Tomosyn is a protein belonging to the Lgl family and conserved across the animal and plant kingdom. Tomosyn is composed of N-terminal domain containing WD40 motif and Cterminal domain, where the R-SNARE motif is located at the end of the C-terminal domain. This motif is classified as homologous to R-SNARE motif of synaptobrevine, which is a protein located on the surface of the vesicles and participating in the formation of SNARE complex and subsequent fusion of the vesicles with the plasma membrane. Thus the role of this tomosyn is mainly the regulation of exocytosis. Apart from the animal tomosyn, its yeast homolog Sro7/Sro77 is also examined, however during the evolution it has lost its R-SNARE motif and therefore the plant tomosyns remain unexplored. The aim of this diploma thesis was to characterize both of the plant tomosyns: AtTYN1 and AtTYN2 in Arabidopsis thaliana plant. The experimental thesis included the bioinformatic analysis, the DNA construct creation, a search for interactors by yeast two-hybrid system and monitoring the localization using the confocal microscope. The bioinformatic analysis results, including the creation of phylogenetic tree, not only revealed the conservation of tomosyns across the different classes, but also the division of both tomosyns into different clusters. There was...
Interaction of Plant Protein Complex Exocyst with Proteins Involved in Plant Immunity
Ortmannová, Jitka ; Žárský, Viktor (advisor) ; Burketová, Lenka (referee) ; Ovečka, Miroslav (referee)
Plants have an artillery to defend themselves. The plant surface is protected by water- resistant cuticle and mechanically strong cell wall. Then each plant cell has tools to recognize and to answer to a pathogen threat. In an extreme case, the answer is programmed cell death. Plant immunity is a complex process integrating these passive and active mechanisms in an effort to overstay a pathogen attack. When the plant cell is attacked by a pathogen, the metabolic resources are redirected towards immunity reaction which results in growth restriction. Both the immunity reaction and the growth are dependent on the efficient polarized secretion of various cargoes. Exocyst complex mediates tethering of a secretory vesicle with a target membrane and SNARE complex orchestrates the subsequent steps of vesicle docking and fusion. Exocyst and SNAREs are regulated by various proteins. In my work, I focused on identifying the exocyst interaction partners in plant immunity. In cooperation with my colleagues, we found the direct association between Qa-SNARE SYP121 involved in plant penetration resistance and EXO70B2 exocyst subunit. Moreover, we confirmed the relevance of their interaction for the formation of epidermal defensive structures, papillae and haustorial encasements in plant defence against non-adapted...
Vesicular trafficking into the plant vacuole
Semerádová, Hana ; Kulich, Ivan (advisor) ; Vosolsobě, Stanislav (referee)
Vacuole is very important plant cell organelle which can occupy 90% of cell volume. It provides wide range of functions. Considering enormous size of the vacuole, vesicle trafficking into the plant vacuole is major vesicle movement inside the cell. Transport pathway into the vacuole is very dynamic field of plant cell biology. This sorting machinery shares similarities within all eukaryotes, but plants also have their own specificities. Soluble cargo is targeted through secretory pathways by vacuolar sorting receptors (VSRs). These proteins due to its transmembrane localization can interact with sorted cargo and take it to the right organelle within the cell. Membrane fusion is facilitated with Rab-GTPase and SNARE protein complexes. A special kind of vesicle traffic is autophagy, the self consuming process that protects the cell from various type of stress or enables apoptosis.
Cytoplasmic membrane and tonoplast dynamics during closing and opening of stomata
Röder, Matěj ; Žárský, Viktor (advisor) ; Albrechtová, Jana (referee)
Stomata are epidermal structures mediating regulated contact of plant apoplast with surrounding environment via stomatal opening. Change of turgor plays crucial part in initiation of stomatal opening or closure. During stomatal movement, guard cell undergo considerable and repetitive changes in cell volume and consequently surface area over a period of minutes. Alteration in the surface of membrane must occurs due to limited stretching capability of the plasma membrane. It can be achieved through membrane invaginations and endocytosis of small vesicles. Microscopy and electrophysiology techniques have proven that both processes are happening in guard cells. These processes are controlled and managed by complex web of signal pathways in which actin and microtubular cytoskeletons, SNARE proteins, ion channels and others molecules have crucial parts. The aim of this work is to summarize current knowledge on the processes and mechanisms of these membranes surface changes and their molecular principle.

National Repository of Grey Literature : 12 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.